- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000004010000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Riviere, B (3)
-
Celaya, A (2)
-
Fuentes, D (2)
-
Joshaghani, M.S. (2)
-
Riviere, B. (2)
-
Actor, J. (1)
-
Celaya, A. (1)
-
Chung, C (1)
-
Fuentes, D. (1)
-
Gates, E (1)
-
Girault, V. (1)
-
Muthosivarajan, R (1)
-
Schellingerhout, D (1)
-
Sekachev, M. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Celaya, A; Riviere, B; Fuentes, D (, arXiv)
-
Celaya, A.; Actor, J.; Muthosivarajan, R; Gates, E; Chung, C; Schellingerhout, D; Riviere, B; Fuentes, D. (, IEEE transactions on medical imaging)Medical imaging deep learning models are often large and complex, requiring specialized hardware to train and evaluate these models. To address such issues, we propose the PocketNet paradigm to reduce the size of deep learning models by throttling the growth of the number of channels in convolutional neural networks. We demonstrate that, for a range of segmentation and classification tasks, PocketNet architectures produce results comparable to that of conventional neural networks while reducing the number of parameters by multiple orders of magnitude, using up to 90% less GPU memory, and speeding up training times by up to 40%, thereby allowing such models to be trained and deployed in resource-constrained settings.more » « less
-
Joshaghani, M.S.; Riviere, B.; Sekachev, M. (, Computer Methods in Applied Mechanics and Engineering)
-
Joshaghani, M.S.; Girault, V.; Riviere, B. (, Journal of Computational Physics)
An official website of the United States government

Full Text Available